Welcome! Log In Create A New Profile

Advanced

extruder not working on sprinter/pronterface or repetier with ramps 1.4

Posted by skangreprap 
extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 08, 2014 06:53PM
Here are some troubleshooting steps I took.
As far as I can tell, all the hardware is working perfectly.

Currently, all my hardware works, X,Y,Z, heatbed, extruder.

My issue is that extruder will not extrude forward or reverse when hitting the pronterface extrude button. Same thing I've observed on Repetier firmware with Repetier host.

Step 1: I switched out the stepper motor cable and the stepper driver with another axis.
Verified it is working.

Step 2: Reinstalled the motor cable and stepper back in extruder E0 slot on RAMPS 1.4 board. Edit pins.h on sprinter and replace the E axis pin value with one of the axis
/* #define E_STEP_PIN 26
#define E_DIR_PIN 28
#define E_ENABLE_PIN 24
*/

#define X_STEP_PIN 26
#define X_DIR_PIN 28
#define X_ENABLE_PIN 24

Hitting x-axis on pronterface moves the extruder.

Step 4: Enable the hotbed, extruder heater to 60 and 210 respectively and try to move the extruder on the pronterface. Still no go.

Step 5: Load repetier firmware and repetier host and test for extruder. Same thing, I can move X,Y,Z but cannot extrude in or out.

From these steps, I've ruled out any hardware issue with the stepper, motor, RAMPS 1.4.
From what I can tell, this issue seems to be either the Firmware or the Software.
Any one got any ideas?
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 09, 2014 04:07AM
I'm having the same issue.

When I run the test code, all hardware moves, including the extruder.

Hot end and heated bed reach the target temperatures just fine.

If I tell Pronterface to move the extruder in either direction, it thinks it's working, but the motor doesn't move.


My (rarely updated) Prusa i3 build log: [3dtheorist.wordpress.com]
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 09, 2014 05:11AM
The usual case here is that in the firmware you've got the maximum extruder acceleration set to too high a value, and the motor is just not capable of moving that fast.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 09, 2014 10:20AM
#define _ACCELERATION 1000 // Axis Normal acceleration mm/s^2
#define _RETRACT_ACCELERATION 2000 // Extruder Normal acceleration mm/s^2
#define _MAX_XY_JERK 20.0
#define _MAX_Z_JERK 0.4
#define _MAX_E_JERK 5.0 // (mm/sec)
//#define _MAX_START_SPEED_UNITS_PER_SECOND {25.0,25.0,0.2,10.0}
#define _MAX_ACCELERATION_UNITS_PER_SQ_SECOND {5000,5000,50,5000} // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts


I'm assuming it's the last line in configuration.h, will try {5000,5000,50,4900} and go down the list.
However, I'm still not convinced this is the case for the extruder not working. Because I should get some sort of jerking motion or at least some sign should show on the stepper when I hit the extruder.

Edited 1 time(s). Last edit at 01/09/2014 10:24AM by skangreprap.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 10, 2014 12:20AM
FIxed.
Was missing some config data on configuration.h
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 10, 2014 07:16AM
Hello,

I've got exactly the same problem like Theorist. I'm using Repetier (Host- and Formware) with Ramps 1.4. Everything is working fine. Only the Extruder doesn't extrude or retract. I set #define EXT0_MAX_ACCELERATION 1000 and still doesn't work. Does anyone has an idea, how to fix it?

I attached my Configuration file. Perhaps I've another bug in it.

Thanks in advance.
Attachments:
open | download - Configuration.h (21.3 KB)
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
January 11, 2014 01:20AM
Theprost and BlackDaddy, I used repetier firmware and repetier host and saw the same issue, the extruder was not moving but I know it does get some sort of signal because when I hit the extruder, the motor froze and as soon as I turn off the power supply, I can freely move the motor. I never got to fix that issue in repetier and jumped back to the sprinter firmware with Pronterface.

In sprinter firmware, the issue was that I deleted the fourth field for x,y,z,e in configuration.h, #define _AXIS_STEP_PER_UNIT #define _AXIS_STEP_PER_UNIT {80,80,3200/1.25}. I added 1380 which is the setting for extruder #define _AXIS_STEP_PER_UNIT {80,80,3200/1.25,1380}. That fixed the issue for me and changed the value for 1380 to 1000 to calibrate my e-axis.

However, as soon as I went in Pronterface and changed the Extrude/Retrace speed from 100mm/min to 99mm/min or anything, the motor started to studder. So I adjusted the current on the driver thinking it was lacking juice. I ended up deleting Pronterface and reinstalling it to the default and again it was back working and as soon as I changed the same Extrude/Retrace speed to something else, the extruder motor would not move. Changing that back to default (100mm/min) would put that back.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
May 04, 2014 11:14AM
I´m having the same problem:

I have a Prusa I3 from [3dprinterczar.com] with RAMPS 1.4 and I´m using the Marlin Firmware and Pronterface and Repetier Host.
When I try to extrude (M302 allows cold extruding) the motor gets power but its not turning at all (you can hear and feel that the motor is blocked, I can´t turn it by hand).
I tried so many options:
i changed the motor cables: when i plug in the extruder motor into another Polulu from the x-axis, it moves!
I changed the polulu stepper drivers and they all work

I just used the Sprinter firmware and it´s also not working with it....

Does anyone have a solution for that?

I attached my configuration.h
Attachments:
open | download - Configuration.h (29.9 KB)
V2T
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
May 23, 2014 06:17AM
Hi zippi

I had same problem as you but on X axis motor, using an oscilloscope to check the stepper X step pin on the extruder helped me coz it was just high, suppose to be stepping.
then i just traced that pin to my arduino board. (from where its getting that signal)
removed ramps from arduino and wrote a simple program to check if i can make that pin low(in my case it was always high)
It did not make it low, traced back to the atmega pin that was also same, the conclusion was that my pin was fried.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
August 14, 2014 12:53PM
Hi guys,

I realize that this thread might be a bit old now, and that you probably have figured things out. But for the benefit for future Googlers, I'll give my solution to this.

I had the same problem when using Repetier Host. It turned out that there is logic in the software that prevents the extruder to move when the extruder heater is not hot enough. I have not checked the software for what the magic temperature is, but heating up the extruder head to 70-80ish degrees things came alive smiling smiley

I hope this helps other noobies like me.

Cheers!
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
August 31, 2014 01:15AM
Quote
arvelarve

...I have not checked the software for what the magic temperature is, but heating up the extruder head to 70-80ish degrees things came alive smiling smiley


In Marlin, the default setting is on line 251 of the configuration.h file:

#define EXTRUDE_MINTEMP 170
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 05, 2014 04:42PM
Hello All,

Strangely, I have exactly the same problems with my Prusa i3 Ramps 1.4.

X-Y-Z axis all work, hotend heats, homing works, but extruder just freezes up when I try to move it, or simulate a print.
Heating up the hotend or lowering EXTRUDE_MINTEMP does not help.
Tried EXT0_MAX_ACCELERATION from 5000 a lot of steps down to 100, does not help.
Lowered default acceleration values, retract acc etc, does not help...

Exchanging cables with any axis, voila; extruder turns, same with stepsticks, so no voltage or motor or cabling problems.

Tried repetier, marlin and sprinter, same thing... Extruder can be hand turned initially, but locks up when I try to extrude manually, or start a print.

I wonder if there is a bad batch of Ramps delivered, my kit came from Replikeo.
Has anyone managed to solve their problem? New Arduino or ramps maybe?
Cheers..
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 07, 2014 08:40AM
OK, I have a solution to my problem, let me share.

Actually it is not a solution but a workaround.

First I dissasembled everything and re-flowed all solders on RAMPS and Arduino pins -not components but pins-.
Then I moved extruder0 cables and stepstick to extruder1, did not work.

Then I tried changing extruder0 to X-axis pins, re-cabled and modified Pins.H accordingly, extruder started working.
Then I relocated X-axis to Extruder1 on RAMPS, modified its Step, Dir and Enable pins in Pins.H tables, now I have both X-axis and extruder.

Bottomline is, when your extruder0 pins are fried, somehow extruder1 does not work, but swapping X-axis and Ext1 works...
Cheers.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 09, 2014 01:12AM
Hello there! This is my first time using this forum, so apologies for any lack of etiquette, general stupidity, etc, etc.

I built a kossel mini and am very close to being able to print, with everything calibrated that I can calibrate EXCEPT FOR THE EXTRUDER. It doesn't turn when I tell it to using Pronterface, even though the text box says that it has successfully extruded the set amount of filament. I have tested the motor on a different driver and it turns fine, and I even swapped the driver in the E spot for a spare, but to no avail. I even plugged an axis motor into the e driver and told it to extrude through pronterface, and the motor moved the respective carriage. The voltage for the E driver is .438, and changing that didn't help either.
After testing all of these scenarios, It follows that the stepper, the driver, and the command itself is working, but for whatever reason when I have the e motor instead of a different one plugged in where it should be, nothing works. At this point I'm thinking it's a problem buried in code somewhere.

Short of replacing the MEGA board, I have found no solutions online (including here) that have worked or are applicable. I'm using Marlin for firmware.

PLEASE HELP, I don't know what else to try sad smiley

Here's my configuration.h file:

#ifndef CONFIGURATION_H
#define CONFIGURATION_H

// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration

//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(jcrocholl, Mini Kossel)" // Who made the changes.

// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0

// This determines the communication speed of the printer
// This determines the communication speed of the printer
#define BAUDRATE 250000

// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED // Enable BT interface on AT90USB devices


//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 2 = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4 = Duemilanove w/ ATMega328P pin assignment
// 5 = Gen6
// 51 = Gen6 deluxe
// 6 = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3
// 68 = Azteeg X3 Pro
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 72 = Ultimainboard 2.x (Uses TEMP_SENSOR 20)
// 77 = 3Drag Controller
// 8 = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 83 = SAV Mk-I (AT90USB1286)
// 9 = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301= Rambo
// 21 = Elefu Ra Board (v3)

#ifndef MOTHERBOARD
#define MOTHERBOARD 33
#endif

// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg [www.uuidgenerator.net])
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// This defines the number of extruders
#define EXTRUDERS 1

//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

#define POWER_SUPPLY 1

// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF

//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics
#define DELTA

// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 160

// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 216.0 // mm

// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 152.0 // mm

// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 20 // mm

// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 25.5 // mm

// Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)

// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 50.0

// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER3_X 0.0 // back middle tower
#define DELTA_TOWER3_Y DELTA_RADIUS

// Diagonal rod squared
#define DELTA_DIAGONAL_ROD_2 pow(DELTA_DIAGONAL_ROD,2)

//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)

#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 1

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 85

// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4

// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R

// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine

// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114

// MakerGear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12

// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP

// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16

// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED



//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================

// Uncomment the following line to enable CoreXY kinematics
// #define COREXY

// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

#ifndef ENDSTOPPULLUPS
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
#endif

#ifdef ENDSTOPPULLUPS
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
#define ENDSTOPPULLUP_ZMIN
#endif

// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS

// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders

#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false

// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.

// Travel limits after homing
#define X_MAX_POS DELTA_PRINTABLE_RADIUS
#define X_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Y_MAX_POS DELTA_PRINTABLE_RADIUS
#define Y_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Z_MAX_POS MANUAL_Z_HOME_POS
#define Z_MIN_POS 0

#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//============================= Bed Auto Leveling ===========================

#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

#ifdef ENABLE_AUTO_BED_LEVELING

// these are the positions on the bed to do the probing
#define DELTA_PROBABLE_RADIUS (DELTA_PRINTABLE_RADIUS-10)
#define LEFT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define RIGHT_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS

// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER 0
#define Y_PROBE_OFFSET_FROM_EXTRUDER 14.0
#define Z_PROBE_OFFSET_FROM_EXTRUDER -8.0

#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case

#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min

#define Z_RAISE_BEFORE_PROBING 100 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points


//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.

// #define PROBE_SERVO_DEACTIVATION_DELAY 300


//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!

#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.

#ifdef Z_SAFE_HOMING

#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)

#endif

// with accurate bed leveling, the bed is sampled in a ACCURATE_BED_LEVELING_POINTSxACCURATE_BED_LEVELING_POINTS grid and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#define ACCURATE_BED_LEVELING

#ifdef ACCURATE_BED_LEVELING
#define ACCURATE_BED_LEVELING_POINTS 7
#define ACCURATE_BED_LEVELING_GRID_X ((RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS - 1))
#define ACCURATE_BED_LEVELING_GRID_Y ((BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS - 1))

// NONLINEAR_BED_LEVELING means: don't try to calculate linear coefficients but instead
// compensate by interpolating between the nearest four Z probe values for each point.
// Useful for deltabots where the print surface may appear like a bowl or dome shape.
// Works best with ACCURATE_BED_LEVELING_POINTS 5 or higher.
#define NONLINEAR_BED_LEVELING
#endif

#endif


// The position of the homing switches
#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)

//Manual homing switch locations:
// For deltabots this means top and center of the Cartesian print volume.
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 270-43.4 // For delta: Distance between nozzle and print surface after homing.

//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {150*60, 150*60, 150*60, 0} // set the homing speeds (mm/min)

// default settings

#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
#define XYZ_STEPS (XYZ_FULL_STEPS_PER_ROTATION * XYZ_MICROSTEPS / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))

#define DEFAULT_AXIS_STEPS_PER_UNIT {XYZ_STEPS, XYZ_STEPS, XYZ_STEPS, 150}
#define DEFAULT_MAX_FEEDRATE {200, 200, 200, 200} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,9000,9000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.

#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 20.0 // (mm/sec)
#define DEFAULT_EJERK 20.0 // (mm/sec)

//===========================================================================
//=============================Additional Features===========================
//===========================================================================

// EEPROM
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can.
//#define EEPROM_CHITCHAT

// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255

#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255

//LCD and SD support
//#define ULTRA_LCD //general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click

// The MaKr3d Makr-Panel with graphic controller and SD support
// [reprap.org]
//#define MAKRPANEL

// The RepRapDiscount Smart Controller (white PCcool smiley
// [reprap.org]
#define REPRAP_DISCOUNT_SMART_CONTROLLER

// The GADGETS3D G3D LCD/SD Controller (blue PCcool smiley
// [reprap.org]
//#define G3D_PANEL

// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCcool smiley
// [reprap.org]
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: [code.google.com]
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// [reprapworld.com]
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click

// The Elefu RA Board Control Panel
// [www.elefu.com]
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: [github.com]
//#define RA_CONTROL_PANEL

//automatic expansion
#if defined (MAKRPANEL)
#define DOGLCD
#define SDSUPPORT
#define ULTIPANEL
#define NEWPANEL
#define DEFAULT_LCD_CONTRAST 17
#endif

#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920
#define REPRAP_DISCOUNT_SMART_CONTROLLER
#endif

#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif

#if defined(REPRAPWORLD_KEYPAD)
#define NEWPANEL
#define ULTIPANEL
#endif
#if defined(RA_CONTROL_PANEL)
#define ULTIPANEL
#define NEWPANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#endif

//I2C PANELS

//#define LCD_I2C_SAINSMART_YWROBOT
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( [bitbucket.org] )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define NEWPANEL
#define ULTIPANEL
#endif

// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( [github.com] )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#define NEWPANEL
#define ULTIPANEL

#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 4
#endif

#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif


#ifdef LCD_USE_I2C_BUZZER
#define LCD_FEEDBACK_FREQUENCY_HZ 1000
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
#endif

#endif

// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
// This uses the LiquidTWI2 library v1.2.3 or later ( [github.com] )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define NEWPANEL
#define ULTIPANEL
#endif

// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// [bitbucket.org]
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
#endif


#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif

// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
# define DEFAULT_LCD_CONTRAST 32
# endif
#endif

// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Temperature status LEDs that display the hotend and bet temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0

// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: [www.doc-diy.net]
// #define PHOTOGRAPH_PIN 23

// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder.
//#define BARICUDA

//define BlinkM/CyzRgb Support
//#define BLINKM

/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/

// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles

#include "Configuration_adv.h"
#include "thermistortables.h"

#endif //__CONFIGURATION_H
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 11, 2014 12:53AM
Quote
parasut
OK, I have a solution to my problem, let me share.

Actually it is not a solution but a workaround.

First I dissasembled everything and re-flowed all solders on RAMPS and Arduino pins -not components but pins-.
Then I moved extruder0 cables and stepstick to extruder1, did not work.

Then I tried changing extruder0 to X-axis pins, re-cabled and modified Pins.H accordingly, extruder started working.
Then I relocated X-axis to Extruder1 on RAMPS, modified its Step, Dir and Enable pins in Pins.H tables, now I have both X-axis and extruder.

Bottomline is, when your extruder0 pins are fried, somehow extruder1 does not work, but swapping X-axis and Ext1 works...
Cheers.

I'm having this exact problem. Will try swapping E0 with the x axis in pins.h and see if that does the trick. Swapping E0 with E1 did not work.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 11, 2014 05:42PM
I tried that to no avail with mine, I also discovered that somewhere in the works the extruder drivers no longer power an axis motor if i swap them, so i tested the voltage and i'm not getting power to the extruder pins. Might reflow or replace the MEGA with a legit arduino instead of the sainsmart version i have now
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 11, 2014 10:48PM
Quote
Bensonthe3rd
I tried that to no avail with mine, I also discovered that somewhere in the works the extruder drivers no longer power an axis motor if i swap them, so i tested the voltage and i'm not getting power to the extruder pins. Might reflow or replace the MEGA with a legit arduino instead of the sainsmart version i have now
I too had a sainsmart arduino replica... Just stopped and picked up an authentic arduino. Bout to swap it out and hopefully i will be back to printing in the morning.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 12, 2014 12:03PM
Tell me how that goes, because I havent yet had the opportunity to print sad smiley I'm gonna buy a new one if reflowing doesn't work
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
September 12, 2014 06:07PM
I picked up a new MEGA and I am printing again.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
October 04, 2014 12:50AM
Hey guys, i think someone already gave the solution to this problem, i had exactly same problem as mentioned above and i solved it by swapping pin numbers in pins.h

i swapped pin numbers of X with E1 (i made E1 as my new X)
swapped pin numbers of E0 with X (i made X as my new E0)

just to avoid confusion i made E0 as E1 (not necessary though)

Everything works perfectly now.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
October 04, 2014 08:19PM
Mahin, did you swap the pin numbers of E0 with your new X (in the E1 spot) pins or with the original X pins? just wondering because I tried one of the options a while ago and it didn't work, but depending on how you interpret your wording there are 2 possible outcomes... Thanks!
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
October 07, 2014 08:34AM


hey, sorry for replying late i was busy in celebrating Eid.

I have attached the pins.h file of mine after the changes, try with these changes and see if it works. its working perfectly for me.


Good luck sir.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
October 29, 2015 05:23PM
this thread is a bit older, but came across it when i sort of ran into this issue myself...i have a new i3 kit that i got off aliexpress...the kit is actually really great for the price...but strangely enough, my extruder functions when i move it through the lcd controls, but i cannot get it to move when using it in matter control...i can move x,y,z using matter control, but not the extruder...ive built several printers now, but still knw nothing about marlin etc. so am hoping that there is a work around that doesnt involve too much work done in the firmware...any help would be appreciated and thanks in advance..
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
November 15, 2015 06:31PM
Quote
mahin1991
[attachment 41573 PINSFILE.jpg]

hey, sorry for replying late i was busy in celebrating Eid.

I have attached the pins.h file of mine after the changes, try with these changes and see if it works. its working perfectly for me.


Good luck sir.

Hi all, this is an old thread, but it help me to swap E0 to E1 position. Thanks for the help.
Re: extruder not working on sprinter/pronterface or repetier with ramps 1.4
February 06, 2017 09:45AM
Hi,

So... No one have posted this solution so I'm just going to put it here... Please check that you have connected the extruder with one of these guys (It will make the motor and extruder to actually move tongue sticking out smiley)

[bit.ly]

Thats it, Good bye! *Ninja smoke*
Sorry, only registered users may post in this forum.

Click here to login